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•  Motivation: ~130,000 deaths owing to PM2.5 
exposure in the U.S. annually (Fann et al., 2012).  
How can we AQ improve models that relate 
mortalities to specific precursor sources?  

 
•  Remote sensing is used to inform US EPA National 

Emissions Inventories, and adjoint modeling is used 
to relate these emissions to attainment of PM2.5 
exposure and ambient air quality standards.   

 
•  Earth observations and models applied: 

– TES NH3, OMI and SCIAMACHY NO2 
–  IMPROVE, CASTNet, NDP, AMoN 
– GEOS-Chem, GISS Model E, CMAQ 

Project summary 



Remote sensing of PM2.5 precursors 
TES NH3 July GEOS-Chem NH3 July 

OMI NO2 CMAQ NO2 

 How to use remote sensing to constrain emissions? 
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As of: 
08/21/2013 Spatial extent of short-lived species on column 

concentrations 

contribution ranges from 38.6%–72.0% in summer and
13.1%–58.0% in winter.
[16] For SO2, we again see the lowest local contribution in

the winter at the Europe test site in Figure 2f. SO2 lifetime
is primarily dictated by photochemistry and aqueous chem-
istry. This aqueous chemistry has a strong seasonal depen-
dence at the China test site likely driven by monsoons and
seasonal rainfall in this region. July is in the monsoon season
for China while December is in the dry season. Overall, for

SO2 we found the modeled local contribution ranges from
19.4%–76.0% in summer and 7.3%–41.3% in winter.
[17] For HCHO, examination of Figures 2g and 2h yields

a strong seasonal dependence at all test sites indicated by an
increased d90 of 1635 km, 282 km, and 9330 km at the
China, America, and Europe sites respectively. HCHO is
treated here as a proxy only for isoprene emissions. Con-
sideration of other VOC sources could reduce d90 and its
seasonal variability. Additionally, we see large spatial vari-
ability at the China site due in part to the heterogeneous
emissions in the region (see Figures S1 and S2). Overall, for
HCHO we found the modeled local contribution ranges from
21.4%–80.0% in summer and 0.1%–61.0% in winter.
[18] The use of a smearing length scale in mass-balance

inversions corresponds to an assumption that 63% of the
emissions influence comes from within the column. Overall,
we see this criterion is satisfied for SO2 at the America and
China sites in July. The results suggest that accounting for
transport from at least one grid cell away is necessary to reach
this criteria in July for NH3, NO2, and HCHO at each site and
SO2 in Europe. Lastly, we note that most (17 of 18) cases in
Figure 2 show an increase in the spatial region required to
return 90% of the total column influence, d90, from July to
December as the winter will generally have less active pho-
tochemistry leading to increasing chemical lifetimes and
longer transport timescales. Additional tests indicate that the
nonlocal influences on monthly average column concentra-
tions are within the same range as those for the mean across
multiple weekly average columns (see Figure S4).

6. Conclusions

[19] Here we demonstrate that nonlocal sources contribute
substantially to average tropospheric column estimates of
short-lived species. Mechanistically, such influences are not
necessarily owing to transport alone; short-lived species can
have long-range impacts through reservoir species and chem-
ical feedbacks. NOx emissions can have long-range impacts
through peroxyacetyl nitrate and chemical feedbacks with
ozone; nonlocal contributions of NH3 can result from aerosol
thermodynamics while nonlocal contributions of isoprene can
result from chemical cycling. The consequence of such feed-
backs is that emissions outside the base of a column at coarse
resolution (!2") may govern more than 50% of the model’s
column concentration and to retrieve 90% of the total column
influence may require accounting for emissions from more
than 500 km away. At this resolution, inventories in Europe
have relatively uniform emissions of NH3, NOx, SO2, and
isoprene, leading to consistently small local contributions and
small spatial variability. Conversely, test sites in China in
general have the largest spatial variance in emissions, resulting
in the largest spatial variance in contributions.While this is not
an exhaustive study, nor a rigorous case-by-case assessment of
the conditions leading to these nonlocal influences, the
potential for large nonlocal contributions demonstrated here
motivates additional attention to spatial attribution errors in the
mass balance approach for top-down constraints. The results
presented here provide a framework for assessing the impor-
tance of such effects for top-down constraints which may
guide method selection or kernel implementation in future
studies. Quantifying these errors is thus warranted for further
assessment.

Figure 2. Cumulative emission influence as a function of
distance for the China (blue), America (red), and Europe
(green) test sites. Simulations from (a, c, e, g) July and
(b, d, f, h) December 2005. The dark lines indicate the aver-
age of simulations at (I, J), (I + 1, J), (I# 1, J), (I, J + 1), and
(I, J # 1) while the shaded region is the maximum and min-
imum of these. The vertical dashed lines with triangles (cir-
cles) at the base indicate the distance, d63 (d90), from the test
location over which the mean FK

d must be summed in order
to account for 63% (90%) of the total emission influence.
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• “mass balance” approach 
assumed to work with 2x2.5 
degree models and coarse 
satellite footprints may have 
significant errors 
 
• Emissions of short-lived 
species can have long-range 
impacts 
 
• Sophisticated data 
assimilation tools needed 
 
• Need is exacerbated by 
higher resolution models and 
higher density of data e.g., 
geostationary (TEMPO) 

Fraction of column governed by emissions 

summer winter 



Air quality models (M) GEOS-Chem / CMAQ predict speciated PM2.5 
 

  
 

Constraining PM2.5 sources  
with 4D-Var approach 
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4D-Var approach: constrain emissions through inverse modeling 
 - uses adjoint model (e.g., Henze et al., 2007) 
 - assimilates observations (y) 
 - adjusts emissions (x) at the grid-scale to minimize J: 
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Constraining emissions of NH3 in GEOS-Chem 
using 4D-Var technique 
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Figure 2. Global figure caption (a) describes the first subfigure; (b) describes the second subfigure;

3. Actual application

For an application with real data, we will use TES
observations throughout 2009 and compare these to
model estimates from the GEOS-Chem chemical trans-
port model in a global 2� ⇥ 2.5� simulation.
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Figure 4. Tests for the possible impacts of inversion error, retrieval bias and measure-

ment error: (a) retrieval algorithm with a polluted profile as an initial guess; (b) modified

retrieval algorithm with a moderate profile as the initial guess; (c) model profiles from

the true model were ascribed error of the same size as the measurement error.
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Figure 5. NH
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emissions from GEOS-Chem before and after the assimilation
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NH3 emissions in GEOS-Chem 
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+80% 

+57% 

+33% 

-  Corrections to NH3 sources highly spatially variable 
-  Recent field campaigns (CalNex) confirm some sources 

underestimated by x3 (e.g, Nowak et al., 2012) 
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Constraints from TES improve  
estimates of NH3 at AMoN sites  
in April and October.  
Contradicting in July. 
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Figure 8. Comparison of GEOS-Chem NH
3

concentrations with observations from

AMoN sites before and after the assimilation. The square of the correlation coe�cient

(R2), root mean square error (RMSE), and normalized mean bias (NMB) are shown.

Black solid lines are regressions. Grey dashed lines are 1:1.
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Figure 8. Comparison of GEOS-Chem NH
3

concentrations with observations from

AMoN sites before and after the assimilation. The square of the correlation coe�cient

(R2), root mean square error (RMSE), and normalized mean bias (NMB) are shown.

Black solid lines are regressions. Grey dashed lines are 1:1.
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Figure 8. Comparison of GEOS-Chem NH
3

concentrations with observations from

AMoN sites before and after the assimilation. The square of the correlation coe�cient

(R2), root mean square error (RMSE), and normalized mean bias (NMB) are shown.

Black solid lines are regressions. Grey dashed lines are 1:1.
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Figure 8. Comparison of GEOS-Chem NH
3

concentrations with observations from

AMoN sites before and after the assimilation. The square of the correlation coe�cient

(R2), root mean square error (RMSE), and normalized mean bias (NMB) are shown.

Black solid lines are regressions. Grey dashed lines are 1:1.
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National mortality related to BC exposure:  Using the all-
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30 drawn from the Krewski et al (2009), we estimate 
(BenMAP) approximately 14,000 BC-related premature deaths 
to result from 2010 air quality levels.  
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support of PM2.5 air quality regulations 
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mortality associated with black carbon (BC) in the US 

Adjoint estimate of BC source contributions (CMAQ 12 km) 

Preliminary results based on June, Matt Turner CU Boulder 



June 1-7, 2007 Analysis
Adjoint estimate of BC source contributions (CMAQ 12 km) 

Preliminary results based on June, Matt Turner CU Boulder 

Health impacts of PM2.5:  
mortality associated with black carbon (BC) in the US 



All sectors Fossil Fuel (12,600) 

Biomass Burning (200) Biofuel (900) 

Annual mortalities from BC emissions in each grid cell 

Health impacts of PM2.5:  
mortality associated with black carbon (BC) in the US 
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-  overall risk compare well to 130,000 / yr from Fann et al. (2012) 
-  mean $/ton benefits similar to Fann et al. (2009) for SO2 
-  much larger for NH3 
 
 

Surface SO2 NH3 

Health impacts of PM2.5: mortality costs of SO2 and 
NH3 sources in the US 

Adjoint estimate of BC source contributions (GEOS-Chem ½° x 2/3°) 



Source attribution of population-weighted PM 
concentrations 

• Impacts of cruise-altitude NOx emissions on NA surface PM 

Impact by location: 
-  1 kg NOx @ 9 – 12km 

Total global impact on  
NA mortality:  
-  320 (120, 580) deaths  
 

µg/m3 per kg/h 

Koo et al., AE, 2013 

• Impacts of NOx vs SO2 vs NH3 emissions on PM2.5   
  concentrations in China and India (Kharol et al., GRL, 2013) 

 - NOx plays a persistent role throughout the year 



McRae and Cass (1981) 
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Optimal AQ control strategy design: past  



Mesbah and Hakami (2011) 
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Optimal AQ control strategy design: present 



Mesbah and Hakami (2011) 
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Step 1: Use principal component analysis (PCA) of to 
identify the dominant meteorological modes driving day-to-
day PM2.5 variability by region 

Main transport modes controlling PM2.5 in the United 
States: 
•  Eastern US: mid-latitude cyclone and cold front 

passage 
•  Pacific coast: synoptic-scale maritime inflow 

Jan 28 Jan 30 
High PM2.5 day Low PM2.5 day 

Example of the 
meteorological conditions 
driving PM2.5 in Midwest on 
two winter days in 2006. 
 
•  High PM2.5 on warm, dry 

day at tail end of 
anticyclone. 

•  Low PM2.5 when cold front 
brings cool, moist air. 

Rapid calculation of PM2.5 response to 2000-2050 
climate change in a suite of climate models   

Tai et al., 2012 



-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Step 2. Identify the dominant meteorological mode in each 
region whose mean period T is most strongly correlated with 
annual mean PM2.5. 

Tai et al., 2012 
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period T Example: Anomalies of the 

annual mean PM2.5 and 
period of cyclone passage 
for US Midwest 

Step 3. Diagnose trends in 
these meteorological modes in 
an ensemble of climate output 
for 2000 to 2050. Apply 
observed PM2.5 sensitivities 
(dPM2.5/dΤ)  to these trends.  

2000-2050 change in annual mean PM2.5 
diagnosed from a suite of climate models 

µg m-3 

Climate penalty: 
Increased stagnation 

Climate benefit: 
Increased maritime 
flow 



•  Start of project ARL = 1   (08/01/2009) 
•  Current ARL = 6 

–  Nested GEOS-Chem adjoint applied to estimate PM25 
health related damages per ton of emission for each 
species, sector and grid-cell.  Species-specific health 
impacts are being assessed at the county level for the 
year 2008. 

–  Health impacts of BC emissions using CMAQ adjoint in 
progress. 

–  GEOS-Chem NH3 assimilation and CMAQ ozone 
adjoint being used by EPA AMD (Shannon Capps). 

•  Expected Ending ARL = 8  (Date) 
–  Emissions constraints implemented in CMAQ and 

attainment analysis considered in EPA NAAQS review 
•  Final ARL with no cost extension = 8 

–  Will prepare seasonal constraints on NH3 emissions 
for incorporation into future National Emissions 
Inventory. 

Inverse modeling and attainment analysis for improved decision 
support of PM2.5 air quality regulations 
Daven K. Henze, University of Colorado Boulder 

As of: 
08/21/2013 

Current and projected ARL 



Milestones	
 Deadline	
 Team	
 Status	


NO2 assimilation operator for CMAQ	
 01/2011	
 US EPA	
 Complete	


Model input data prepared for CMAQ 12 km 
analysis	


08/2012	
 CU Boulder / 
US EPA	


Complete	


Remote sensing constraints on NH3	
 01/2013	
 CU Boulder	
 Complete	


Adjoint-enabled satellite data assimilation 
and attainment analysis adopted at EPA	


01/2013	
 US EPA	
 Complete	


Forward model evaluation of aerosol health 
impacts	


08/2013	
 Columbia U. / 
CU Boulder	


Complete	


Aerosol health impacts / attainment applied 
to PM2.5 NAAQS	


08/2014	
 Columbia U. / 
CU Boulder	


NCE	


NO2 inverse modeling constraints in CMAQ	

	


07/2014	
 CU Boulder	
 NCE	

	


Climate impacts on PM2.5 attainment	
 08/2014	
 Harvard / CU 
Boulder	


NCE	


Inverse modeling and attainment analysis for improved decision 
support of PM2.5 air quality regulations 
Daven K. Henze, University of Colorado Boulder 

As of: 
08/21/2013 

Recent and future milestones 
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•  Harvard subcontract nearly completed 
•  Columbia subcontract will be exhausted by Feb, 2014; funding to 

support postdoc Ying Li , Co-PI Pak Kinney and Co-I Darby Jack  
•  CU Boulder funding proceeding for support of graduate students and 

PI.  Facilities, Admin, and Op expenses track personnel expenditures. 

Inverse modeling and attainment analysis for improved decision 
support of PM2.5 air quality regulations 
Daven K. Henze, University of Colorado Boulder 

As of: 
08/21/2013 

Obligations and cost status 



•  Management challenges 
•  Challenge to hire / maintain personnel at EPA 

•  Postdoc Shannon Capps there for 9 months using CMAQ adjoint & TES 
NH3 

•  Took time to hire postdocs / students in Henze group 
•  After slow start, group now tackling all project areas. 

•  Technical risk 
•  CMAQ adjoint still not stable 

•  Complete inversions / attainment with GEOS-Chem; use CMAQ 
forward model for downscaling results.  

•  TES NH3 data challenges owing to sparse sampling 
•  Consider IASI or AIRS products, which have poorer signal/noise  but 

wider coverage  
•  TES/OMI lifetime is limited 

•  Consider CrIS, TROPOMI, GEO-CAPE for future remote sensing 
constraints on emissions 

•  Driving GEOS-Chem with high resolution GISS climatology difficult 
•  Schedule risk: Low to medium 

•  NAAQS review process at EPA a moving target 

As of: 
08/21/2013 

Risks and Issues 
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Error in estimating US PM2.5 associated mortality relative to finest 
simulation (Ying Li, Columbia U.): 

-  Greater resolution error for PM2.5 when using threshold (x2 w/5.8 ug/m3) 
-  Aggregated model values ≠ coarse simulation, but close (<0.3 ug/m3) 
-  Results similar, but less dramatic, than Punger and West (2013) 

finer  coarser 

Inverse modeling and attainment analysis for improved decision 
support of PM2.5 air quality regulations 
Daven K. Henze, University of Colorado Boulder 

As of: 
08/21/2013 

Health impacts of PM2.5:  
impacts of black carbon (BC) in the US 



Validating TES NH3 with surface observations 

Overlap surface obs with TES Transects for 2009:  

 

NH3 Emission Density 
[kg NH3 / km 2 ]

< 100

1000

>10000
TES Transect
CAMNet Monitoring Site

TES reflects real-world spatial gradients and 
seasonal trends 

Pinder et al., 2011 



Resolution effects on  
model estimates of health impacts: US 

GEOS-Chem 2x2.5 – GEOS-Chem 0.5 x 0.67: deaths from sulfate 

mortalities 

counties 

∆mortalities 



Resolution effects on  
response coefficients: Mexico 

0.0 10%6.7%3.3% 0.0 2.4%1.6%0.8% 0.0 10%6.7%3.3%

coarse fine fine aggregated 
Contribution of SO2 emissions per grid-box to Mexico’s pop-PM2.5: 

Coarse simulation overestimates impacts of emissions 
near urban center and underestimates in surrounding 
areas 

January 



Resolution effects on  
response coefficients: Mexico 

coarse fine fine aggregated 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 

NH3 SO2 BC OC NOx 

coarse        fine aggregated 

Contribution of BC emissions per grid-box to Mexico’s pop-PM2.5: 

Total contribution of species to % of Mexico’s pop-PM2.5: 

January 

0.0 10%6.7%3.3% 0.0 2.4%1.6%0.8% 0.0 10%6.7%3.3%



Source attribution of PM2.5 related global mortality 

Mortality impacts owing to 10% PM2.5 precursor emissions reductions:  

Mortality rates and dose-
receptor relationships from 
Global Burden of Disease,  
GEOS-Chem adjoint at  
2° x 2.5°  
(Colin Lee, Dalhousie). 

PM2.5 subgrid variability (0.1° x 0.1°) resolved using MODIS AOD 
(van Donkelaar et al., 2013) 

Response to ∆NH3: 

<10  25 80 200 >600 



Impacts of sub-grid variability (MODIS) on SO2 
emissions global mortality response coefficients 

-  GEOS-Chem subgrid variability determined by satellite 
-  GEOS-Chem values retained 
-  GEOS-Chem values clearly very low 

(Colin Lee, Dalhousie) 



Impacts of sub-grid variability (MODIS) on SO2 
emissions global mortality response coefficients 

log10( with downscaling / without) 

Impacts of resolution can be dramatic, increasing or decreasing, 
and depend upon environmental condition. 

(Colin Lee, Dalhousie) 



Remote sensing constraints on NH3 

EPA’s AMoN sites (>2007) 
(Puchalski et al., 2011) 
 
Also LADCO, SEARCH, CSU, 
ANARChE 

 
TES: 
 - sensitive to BL 
 - detection limit of ~ 1 ppb 
 - bias of +0.5 ppb 
more precise & sparse than IASI 

(Beer et al., 2008; Clarisse et al., 2009; 
Clarisse et al., 2010; Shephard et al., 2011) 

TES NH3  
sensitivity 

Remote sensing with TES and IASI: 

Passive surface measurements: 

NH3 is important for understanding PM2.5 and Nr dep but 
sources are not well constrained. 



Remote sensing of PM2.5 precursors 
OMI NO2  

2005 

2011 

Russell et al., 2012 

NH3 

Clarisse et al., 2009 

PM2.5 AQ model 
simulations 
undermined by 
emissions 
uncertainties.  
  
How to use remote 
sensing to constrain 
emissions? 



Adjoint sensitivities reveal differences between locations with the 
highest emissions (Fig a) and locations where emissions have the 
largest impact on health (Fig b) 

Sensitivity of U.S. BC related mortalities to emissions estimated in CMAQ for April, 2008 

Milestone #3: Source attribution of aerosol related health impacts 

Inverse modeling and attainment analysis for improved decision 
support of PM2.5 air quality regulations 
Daven K. Henze, University of Colorado Boulder 

As of: 
08/21/2013 

(a) Emissions (b) Contributions to mortality (a) Emissions (b) Contributions to mortality Gg/yr deaths 



Instrumented AQ modeling: boundary sensitivity case 
study (in collaboration with EPA AMD) 

•  Designation of “background O3” important for potential revisions to 
O3 standards (e.g., Zhang et al., 2011; Lin et al., 2012 ) 

•  Oltmans et al. (2010): episode of high influence of international 
transport on ozone over western North America during April, 2008. 

•  CMAQ uses GEOS-Chem boundary 
 conditions – where does that ozone itself 
 come from? 

GC adjoint calculations to define  
boundary subregions: 



Denver O3 sensitivity to boundary O3 concentrations 

*-NOTE: Results are specific to period of high ozone transport and should not be 
extrapolated to other times or seasons 

Simulation Hour after April 1, 2008 

pp
b 

Ozone concentrations are most sensitive to O3 concentrations at the 
Northwestern boundaries, primarily the upper boundary.  
 



Northwest O3 sensitivity to global NOx 
emissions 

Northwest boundaries are impacted by China, 
United States, Russia, and Canada.   
 

Influences on total O3 at NW upper boundary 

Influences on O3 at NW lower boundary 



~12,356 mortalities in the US 
attributed to exposure to BC in 2007
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Health impacts of PM2.5:  
mortality associated with black carbon (BC) in the US 


